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Abstract

The steady stagnation point flow through a porous medium bounded by a vertical surface is investigated in this study. The external
velocity, which normally impinges the vertical surface and the surface temperature are assumed to vary linearly with the distance from
the stagnation point. The governing system of partial differential equations is first transformed into a system of ordinary differential
equations, and then they are solved numerically by a finite-difference scheme, namely the Keller-box method. The features of the flow
and heat transfer characteristics for different values of the governing parameters are analyzed and discussed. Both cases of assisting and
opposing flows are considered. It is found that dual solutions exist for assisting flow, besides that usually reported in the literature for
opposing flow. Therefore, the reported results are completely new.
� 2007 Elsevier Ltd. All rights reserved.

Keywords: Boundary layer; Dual solutions; Mixed convection; Stagnation point; Porous medium
1. Introduction

The study of fluid flow in a fibrous porous medium, such
as filter, is important in many practical fields to understand
the character of the porous medium in order to remove
small particles contained in the fluid more effectively. For
this study, Darcy’s law may be used as a basic equation.
This law expresses that the velocity is proportional to the
pressure gradient and it does not contain the convective
acceleration of the fluid. However, Darcy’s law is consid-
ered valid for flows at low speed, whereas the speed in
the filter is not always small and the convective force will
become important, see Yamamoto and Iwamura [1]. The
mathematical formulations based on Darcy’s law will
neglect the effects of a solid boundary or the inertia forces
on fluid flow and heat transfer through porous media. In
general, the inertia and boundary effects become significant
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when the fluid velocity is high and the heat transfer is con-
sidered in the near wall region, see Chen and Lin [2]. Brink-
man [3] proposed a model which accounts for the transition
from Darcy flow to highly viscous flow (without porous
matrix), in the limit of extremely high permeability. How-
ever, Brinkman model does not account adequately for
the transition from porous medium flow to pure fluid flow
as the permeability of the porous medium increases. A
model that bridges the entire gap between the Darcy and
Navier–Stokes equations is the Darcy–Forchheimer model
which was developed by Vafai and Tien [4] and which is
very well described in the book by Nakayama [5]. Darcy–
Forchheimer model with the velocity square inertial term
neglected has been used by Raptis [6], Raptis and Perdikis
[7], Raptis and Takhar [8], etc. to study the flow and heat
transfer characteristics over vertical and horizontal flat
plates, when the effects of suction and injection, as well
as of magnetic field were included. This model has also
been used by Du and Bilgen [9], and recently by Sathiya-
moorthy et al. [10] to study the free convection in a square
cavity.
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Nomenclature

a, b constants
Cf skin friction coefficient
f dimensionless stream function
g acceleration due to gravity
k thermal conductivity
K permeability parameter
K1 permeability of the porous medium
Nux local Nusselt number
Pex local Péclet number
Pr Prandtl number
qw heat transfer from the plate
Rax local Rayleigh number
Rex local Reynolds number
T fluid temperature
Tw(x) plate temperature
T1 ambient temperature
u, v velocity components along the x- and y-direc-

tions, respectively
ue(x) external velocity
x, y Cartesian coordinates along the surface and

normal to it, respectively

Greek symbols

a thermal diffusivity
b thermal expansion coefficient
g similarity variable
h dimensionless temperature
k buoyancy or mixed convection parameter
m kinematic viscosity
l dynamic viscosity
q fluid density
sw skin friction
w stream function
Subscripts

e condition at the edge of the boundary layer
w condition at the wall
1 condition away from the wall
Superscript
0 differentiation with respect to g

y

g

( )wT x
x

T∞

u

v

( )eu x

Stagnation
point region
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In the present paper, we study the mixed convection
flow near the stagnation point on a vertical surface which
is embedded in a fluid-saturated porous medium using
the Darcy–Forchheimer model with the velocity square
term neglected. It is shown that dual solutions exist in
the opposing flow regime and they continue into that of
the assisting flow regime, i.e. when the buoyancy force acts
in the same direction as the inertia force. To this end, we
wish to mention that only a few attempts have been made
to find the second solutions for the assisting flow case.
Ridha [11] probably is the first to find the existence of dual
solutions in both cases, assisting and opposing flows when
he studied the problems of mixed-convection flow over a
horizontal surface, mixed-convection flow over a vertical
surface and axisymmetric mixed-convection on a vertical
cylinder. Very recently, Merrill et al. [12] improved the
result obtained by Nazar et al. [13] for purely Darcy flow,
showing that the lower branch solutions exist in the oppos-
ing flow regime and they continue into the assisting flow
regime, while the latter reported the existence of dual solu-
tions only in the case of opposing flow. Merrill et al. [12]
found that dual solutions exist for all values of the buoy-
ancy parameter k > kc, where kc (<0) is the value of k for
which the upper branch solution meets the lower branch
solution.
Porous medium

Fig. 1. Physical model and coordinate system.
2. Analysis

Consider the steady laminar boundary layer flow
towards the stagnation point on a vertical flat plate, which
is embedded in a porous medium as shown in Fig. 1. Either
heating or cooling of the plate is assumed to begin simulta-
neously with the motion of the external stream. It is
assumed that the temperature of the plate, Tw(x), and the
external velocity, ue(x), vary linearly with the distance from
the stagnation point. It is also assumed that the tempera-
ture of the ambient fluid is T1, where Tw(x) > T1 for a
heated plate (assisting flow) and Tw(x) < T1 for a cooled
plate (opposing flow). The physical properties of the fluid
are assumed to be constant except the density in the buoy-
ancy force term, which is satisfied by the Boussinesq
approximation. We shall use the Darcy–Forchheimer
model, where the velocity square term is neglected. Under
these assumptions, the boundary layer equations are (see
Vafai and Tien [4] or Nakayama [5])



1152 A. Ishak et al. / International Journal of Heat and Mass Transfer 51 (2008) 1150–1155
ou
ox
þ ov

oy
¼ 0; ð1Þ

u
ou
ox
þ v

ou
oy
¼ ue

due

dx
þ m

o
2u

oy2
þ m

K1

ðue � uÞ þ gbðT � T1Þ;

ð2Þ

u
oT
ox
þ v

oT
oy
¼ a

o2T
oy2

; ð3Þ

subject to the boundary conditions

u ¼ 0; v ¼ 0; T ¼ T w; at y ¼ 0;

u! ueðxÞ; T ! T1 as y !1; ð4Þ

where x and y are the Cartesian coordinates with the origin
at the stagnation point along and normal to the plate,
respectively, u and v are the velocity components along
the x- and y-axes, respectively, T is the fluid temperature
and the other physical quantities are defined in the
Nomenclature.

We assume that the external velocity ue(x) and the plate
temperature Tw(x) are respectively given by

ueðxÞ ¼ ax; T wðxÞ ¼ T1 þ bx; ð5Þ

where a (>0) and b are constants with b > 0 for an assisting
flow and b < 0 for an opposing flow (see Sparrow et al.
[14]).

We introduce now the following similarity variables (see
Cheng [15] or Lai and Kulacki [16])

g ¼ uex
a

� �1=2 y
x
;w ¼ ðauexÞ1=2f ðgÞ; hðgÞ ¼ T � T1

T w � T1
; ð6Þ

where w is the stream function defined as u = ow/oy and
v = �ow/ox, so as to identically satisfy Eq. (1). Substituting
(6) into Eqs. (2) and (3), we get the following ordinary dif-
ferential equations:

Prf 000 þ ff 00 þ 1� f 02 þ Kð1� f 0Þ þ kKh ¼ 0; ð7Þ

h00 þ f h0 þ f 0h ¼ 0; ð8Þ

where primes denote differentiation with respect to g,
Pr = m/a is the Prandtl number, K = m/(aK1) is the perme-
ability parameter and k = Rax/Pex is the buoyancy param-
eter, with Rax = K1gb(Tw � T1)x/(ma) and Pex = uex/a
being the local Rayleigh number and local Péclet number,
respectively. We notice that k is a constant with k > 0 cor-
responds to assisting flow and k < 0 corresponds to oppos-
ing flow, while k = 0 is for forced convection limit. The
boundary conditions (4) become

f ð0Þ ¼ f 0ð0Þ ¼ 0; hð0Þ ¼ 1; f 0ð1Þ ! 1; hð1Þ ! 0:

ð9Þ

It is interesting to note that when K ?1 (pure Darcy
flow), Eq. (7) reduces to
f 0 ¼ 1þ kh; ð10Þ

along with the boundary conditions for Eqs. (8) and (10)

f ð0Þ ¼ 0; hð0Þ ¼ 1; hð1Þ ! 0: ð11Þ

Eqs. (8), (10) and (11) are similarity equations for the case
of pure Darcy flow previously considered by Lai and
Kulacki [16] for impermeable plate, in their paper. There-
fore, the results reported in [16] can be used for compari-
son, which can support the validity of the present results.
Further, Eqs. (8) and (10) can be combined to obtain

f 000 þ ff 00 þ f 0 � f 02 ¼ 0; ð12Þ

subject to the boundary conditions

f ð0Þ ¼ 0; f 0ð0Þ ¼ 1þ k; f 0ð1Þ ! 1: ð13Þ

Eq. (12) subjected to (13) is the governing equation for the
final steady flow previously solved by Nazar et al. [13],
where the existence of dual solutions was reported in the
range �1.4175 < k < �1. Recently, Merrill et al. [12] im-
proved this result, showing that dual solutions exist for
all values of k > �1.4175. In this study, we show that for
K = 1, 10, 100 and 1000, dual solutions exist in the oppos-
ing flow regime and they continue into that of assisting,
which agree with Merrill et al. [12], for the case K ?1.

The physical quantities of interest are the skin friction
coefficient Cf and the local Nusselt number Nux, which
are defined by

Cf ¼
sw

qu2
e=2

; Nux ¼
xqw

kðT w � T1Þ
; ð14Þ

where the skin friction sw and the heat transfer from the
plate qw are given by

sw ¼ l
ou
oy

� �
y¼0

; qw ¼ �k
oT
oy

� �
y¼0

; ð15Þ

with l and k being the dynamic viscosity and thermal con-
ductivity, respectively. Using the similarity variables (6), we
get

1

2
Cf Re1=2

x =Pr1=2 ¼ f 00ð0Þ; Nux=Pe1=2
x ¼ �h0ð0Þ; ð16Þ

where Rex = uex/m is the local Reynolds number.

3. Results and discussion

The system of equations (7)–(9) has been solved numer-
ically for some values of the permeability parameter K and
buoyancy parameter k, while the Prandtl number Pr is
fixed to be unity (Pr = 1), except for comparisons with pre-
viously reported cases. The nonlinear ordinary differential
equations have been solved numerically using the Keller-
box method by integrating forwards in g until a predeter-
mined large value of g is reached, g1 say, where we assume
the infinity boundary condition may be enforced. The step
size of g, Dg, and the edge of the boundary layer, g1, are
adjusted for different range of parameters. The Keller-
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Fig. 2. Skin friction coefficient f00(0) as a function of k for K = 10 and 100
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box method is very well described in the book by Cebeci
and Bradshaw [17].

The values of the local Nusselt number in terms of
�h0ð0Þ

ffiffiffiffiffi
Pr
p

and �h0(0) are obtained and compared with pre-
viously reported cases. The comparisons are shown in
Tables 1 and 2, respectively. It is seen that the values of
�h0ð0Þ

ffiffiffiffiffi
Pr
p

obtained from this study are in very good agree-
ment with the results reported by Yih [18], and the values
of �h0(0) are in excellent agreement with the results given
by Lai and Kulacki [16] and Yih [19]. Therefore, it can
be concluded that the developed code can be used with
great confidence to study the problem discussed in this
paper. In addition, Table 2 also presents the second value
of �h0(0) for a particular value of k (6¼0) that neither
reported by Lai and Kulacki [16] nor Yih [19].

The variations of the skin friction coefficient f00(0) and
the local Nusselt number �h0(0) with buoyancy parameter
k for K = 10 and 100 are shown in Figs. 2 and 3 respec-
tively, all for Pr = 1. These figures show that dual solutions
exist in the opposing flow regime (k < 0) and they continue
into the assisting flow regime (k > 0). For k > 0, there is a
favorable pressure gradient due to the buoyancy forces,
which results in the flow being accelerated and conse-
quently there is a larger skin friction coefficient than in
the non-buoyant case (k = 0). For negative values of k,
there is a critical value kc, with two branches of solution
for k > kc, a saddle-node bifurcation at k = kc and no
solutions for k < kc. The boundary layer separates from
Table 1
Values of �h0ð0Þ

ffiffiffiffiffi
Pr
p

for various values of Pr when k = 0 and K = 0

Pr Yih [18] Present results

0.0001 0.012433 0.0124
0.001 0.038658 0.0387
0.01 0.116372 0.1164
0.1 0.324927 0.3249
1 0.811301 0.8113
10 1.861577 1.8616
100 4.115021 4.1150
1000 8.963783 8.9638
10000 19.408995 19.4090

Table 2
Values of �h0(0) for various values of k when Pr = 1 and K = 1010

k Lai and Kulacki
[16]

Yih [19] Present results

Upper branch Lower branch

�1.0 0.7314 0.7314 0.7314 �0.3027
�0.8 0.8640 0.8640 0.8640 �0.3666
�0.6 0.9772 0.9771 0.9771 �0.5644
�0.4 1.0776 1.0776 1.0776 �1.1789
�0.2 1.1690 1.1690 1.1690 �3.3454

0.0 1.2533 1.2533 1.2533 –
0.5 1.4419 1.4419 1.4419 3.3713
1.0 1.6078 1.6078 1.6078 2.6356
3.0 2.1446 2.1445 2.1445 2.5817

10.0 3.4081 3.4081 3.4081 3.6458
20.0 4.6499 4.6499 4.6499 4.8503
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Fig. 3. Local Nusselt number �h0(0) as a function of k for K = 10 and 100
when Pr = 1.
the surface at k = kc, thus we are unable to get the solution
for k < kc by using the boundary layer approximations. To
obtain the solutions beyond this value, the full Navier–
Stokes equations have to be used. Based on our computa-
tions, kc = �1.7002 for K = 10, and kc = �1.4599 for
K = 100. The boundary layer separation occurs at k = kc

where f00(0) < 0, a different result from the classical bound-
ary layer theory where separation occurs when f00(0) = 0.

We identify the upper and lower branch solutions in the
following discussion by how they appear in Fig. 2, i.e. the
upper branch solution has a higher value of f00(0) for a
given k than the lower branch solution. For assisting flow,
dual solutions are found to exist for all positive values of k
considered, to much higher values than shown in Fig. 2.
This figure also shows that the critical value jkcj increases
as the permeability parameter K is decreased, suggesting
that higher porosity of the porous medium (small values
of K) increases the range of existence of solutions to
Eqs. (7)–(9), i.e. the boundary layer separation can be
delayed by increasing the porosity of the medium. The
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results shown in Fig. 3 for the heat transfer rate at the sur-
face, �h0(0), suggest that for the lower branch solution,
�h0(0) becomes unbounded as k ? 0� and as k ? 0+.

Figs. 4 and 5 respectively illustrate the samples of veloc-
ity and temperature profiles for opposing flow, k = �1,
while the corresponding assisting flow, k = 1, are shown
in Figs. 6 and 7, all for Pr = 1. In these figures the solid
lines are for the upper branch solutions and the dash lines
for the lower branch solutions. As seen in Figs. 4–7, there
are dual solutions both when k = �1 and k = 1. The dual
solutions are obtained by setting different values of g1,
as can be seen from Figs. 4–7 that the lower branch solu-
tions have larger boundary layer thickness compared to
the upper branch solutions. To which of the dual solutions,
the flow will approach as it developes from the leading edge
depends essentially on the stability of the solution. A full
stability analysis is beyond the scope of the present work,
and is an importance challenge for future research. How-
ever, we suggest that it will be the upper branch solutions
that are the most physical relevance, since the forced
convection limit (k = 0) is on the upper branch and it is
0 1 2 3 4 5 6 7 8
–0.5

0

0.5

1

1.5

2

2.5

3

η

θ(
η)

Pr = 1, λ = 1

K = 1, 10, 100, 1000

upper branch

lower branch

Fig. 5. Temperature profiles h(g) for different values of K when Pr = 1
and k = �1 (opposing flow).
the only solution for this case. Although the lower branch
solutions seem to deprive physical significance, they are
nevertheless of interest in so far as the differential equations
are concerned. Similar equations may reappear in other sit-
uations where the corresponding solutions have more real-
istic meaning.

Finally, Figs. 4–7 show that the boundary conditions (9)
are satisfied, which support the validity of the present
results, besides support the dual nature of the solution to
the boundary-value problem (7)–(9).
4. Conclusions

We have theoretically studied the similarity solutions for
steady stagnation point flow through a porous medium
bounded by a vertical plate immersed in an incompressible
viscous fluid using the generalized equation of Darcy’s law.
The governing nonlinear ordinary differential equations
were solved numerically using the Keller-box method. We
discussed the effects of the permeability parameter K and
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the buoyancy parameter k on the fluid flow and heat trans-
fer characteristics, while the Prandtl number is fixed to be
unity.

A novel feature to emerge from the present study is the
existence of a reversed flow region, in addition to a dual-
solution in the assisting flow regime (k > 0), besides that
in the opposing flow regime (k < 0). In the assisting flow
case, solutions could be obtained for all positive values of
k, whereas in the opposing case the solution terminates
with a saddle-node bifurcation at k = kc (kc < 0). The value
of jkcj decreases with an increase in K, thus increasing K is
to accelerate the boundary layer separation, which in turn
decreases the range of similarity solutions.
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(1992) 149–155.

[10] M. Sathiyamoorthy, T. Basak, S. Roy, I. Pop, Steady natural
convection flow in a square cavity filled with a porous medium for
linearly heated side wall (s), Int. J. Heat Mass Transfer 50 (2007)
1892–1901.

[11] A. Ridha, Aiding flows non-unique similarity solutions of mixed-
convection boundary-layer equations, J. Appl. Math. Phys. (ZAMP)
47 (1996) 341–352.

[12] K. Merrill, M. Beauchesne, J. Previte, J. Paullet, P. Weidman, Final
steady flow near a stagnation point on a vertical surface in a porous
medium, Int. J. Heat Mass Transfer 49 (2006) 4681–4686.

[13] R. Nazar, N. Amin, I. Pop, Unsteady mixed convection boundary
layer flow near the stagnation point on a vertical surface in a porous
medium, Int. J. Heat Mass Transfer 47 (2004) 2681–2688.

[14] E.M. Sparrow, R. Eichhorn, J.L. Gregg, Combined forced and free
convection in a boundary layer flow, Phys. Fluids 2 (1959) 319–328.

[15] P. Cheng, Combined free and forced convection flow about inclined
surfaces in porous media, Int. J. Heat Mass Transfer 20 (1977) 807–
814.

[16] F.C. Lai, F.A. Kulacki, The influence of lateral mass flux on mixed
convection over inclined surfaces in saturated porous media, ASME
J. Heat Transfer 112 (1990) 515–518.

[17] T. Cebeci, P. Bradshaw, Physical and Computational Aspects of
Convective Heat Transfer, Springer, New York, 1988.

[18] K.A. Yih, The effect of uniform suction/blowing on heat transfer of
magnetohydrodynamic Hiemenz flow through porous media, Acta
Mech. 130 (1998) 147–158.

[19] K.A. Yih, Heat source/sink effect on MHD mixed convection in
stagnation flow on a vertical permeable plate in porous media, Int.
Commun. Heat Mass Transfer 25 (1998) 427–442.


	Dual solutions in mixed convection flow near a stagnation point on a vertical surface in a porous medium
	Introduction
	Analysis
	Results and discussion
	Conclusions
	Acknowledgements
	References


